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Abstract

Pediatrics

IntroductIon

Type 1 diabetes mellitus (T1DM) accounts for 90% of diabetes 
cases in children and adolescents. The incidence in children 
and adolescents in three Egyptian governorates (Fayoum, 
North Sinai, and Suez) is 4.01/100 000 per year [1]. There 
is formation of T1DM‑associated autoantibodies, leading 
to loss of β‑cells [2]. Specific antibodies that are detected 
in patients with T1DM include islet cell antibodies, 
glutamic acid decarboxylase antibodies (GAD‑65), insulin 
autoantibodies (IAA), and protein tyrosine phosphatase and 
zinc transporter [3]. The disease process begins months to 

years before the onset of hyperglycemia, and clinical symptoms 
become apparent when approximately more than or equal to 
90% of pancreatic β cells are destroyed [4].

T1DM has a strong association with genetic susceptibility 
and different environmental factors such as short‑term 
exclusive breast‑feeding [5], early introduction of cows’ 

Background and aim
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by destruction of pancreatic islet β cells, leading to absolute insulin deficiency. 
The D vitamins are a group of sterols that have a hormone‑like function, which bind to vitamin D receptor. Vitamin D (25(OH) D) deficiency 
is involved in the induction of autoimmune destruction of β‑cells and onset of T1DM. The majority of circulating 25(OH) D is bound to 
vitamin D‑binding protein (VDBP), which protects it from biodegradation, limits its access to target tissues, and helps its reabsorption from 
the kidneys. VDBP also binds fatty acids, activates macrophages, enhances the chemotactic activity of C5, and associates with immune cell 
surfaces. The aim of our work was to evaluate the levels of 25(OH) D and VDBP and their relation to each other in T1DM and comparing 
25(OH) D level with some variables in children with T1DM.

Patients and methods
In this simple comparative study, 60 children with T1DM and 35 normal children were enrolled, and for them, we measured serum 
25‑hydroxyvitamin D, serum VDBP, and glycosylated hemoglobin (HbA1c).

Results
25(OH) D level was significantly lower in T1DM group than control (20.73 ± 5.69 and 41.16 ± 3.61 ng/ml, respectively) (t = 8.3 and P < 0.0001). 
Moreover, VDBP level was significantly lower in T1DM group than control group (203.96 ± 32.52 and 238.32 ± 34.82 µg/ml, respectively) (t = 4.7 
and P < 0.0001). 25(OH)D level in T1DM had a significant positive correlation with age at onset of the disease (r=0.77) and a significant negative 
correlation with HbA1c % (r=‑0.74) and no correlation with VDBP levels or disease duration.

Conclusion
25(OH)D and VDBP levels in T1DM were significantly lower than normal children. 25(OH)D level had no correlation with VDBP levels, a 
positive correlation with age at onset of the disease, a negative correlation with HbA1c %, and no correlation with disease duration.
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milk or cereals [6], enterovirus infections [7], and vitamin D 
deficiency [8].

The D vitamins are a group of sterols that have a 
hormone‑like function. The two main forms of vitamin D 
are cholecalciferol (vitamin D3) and ergocalciferol (vitamin 
D2) [8].

Vitamin D3 is hydroxylated twice to the active form, 
generating 1α, 25‑dihydroxyvitamin D3 (1α,25‑(OH) 
2D3) [9], which binds to vitamin D receptor (VDR) at target 
cells, and subsequently binding to the specific DNA called 
vitamin D responsive elements (VDREs) to exert its effects 
at the transcriptional level [10]. Additionally, VDR and 1, 
25‑(OH) 2D3 complex also intervene in the function of nuclear 
transcriptional factors in a dose‑dependent manner. All the 
genes with VDREs in the promoter regions play a crucial 
role in immunoregulation, and abnormal expression may lead 
to autoimmune diseases [11]. VDR are expressed in human 
T and B lymphocytes, and vitamin D is thought to modify 
the Th1/Th2 cytokine profile [12] and inhibit lymphocyte 
proliferation [13]. It also counteracts cytokine‑induced 
expression of Fas, which regulates cell death in human 
islet cells, so 1, 25(OH) 2D3 plays an immunomodulatory 
role in the prevention of T1DM [14], and thus, VDR 
gene polymorphisms may be related to T‑cell‑mediated 
autoimmune diseases [15].

The majority of circulating 25‑hydroxyvitamin D (25OHD) 
and 1,25(OH) 2D is tightly bound to vitamin D‑binding 
protein (VDBP), 10–15% is bound to albumin, and less than 
1% is in free form. Serum 25OHD is the standard indicator of 
vitamin D status, composed of vitamin D3 and vitamin D2 [16].

VDBP is a 58‑kDa glycoprotein that serves as the main 
carrier for circulating vitamin D and its metabolites. Its role 
is maintaining the total levels of vitamin D and regulating the 
amounts of free vitamin D available for utilization [17]. It is 
relatively stable and should be considered in the interpretation 
of 25(OH) D levels [18].

The VDBP+25OHD complex is freely filtered across the 
glomerulus allowing transport to the proximal tubule, where 
its reabsorption facilitates the generation of 1, 25(OH) 2D [19] 
and reduces the urinary excretion of 1, 25(OH) 2D to trace [20].

There are three main roles of VDBP in vitamin D physiology: 
protecting it from biodegradation, limiting its access to 
target tissues, and its reabsorption from the kidneys. The 
VDBP/25(OH)D complex is filtered in the glomerulus and 
then reabsorbed by megalin‑cubilin receptors of the proximal 
tubular epithelial cells. VDBP is degraded in lysosomes, 
whereas 25(OH) D is converted into biologically active 1, 
25(OH) 2D, which is resecreted into the circulation [21].

Aside from its main function of 25 (OH) D transport and 
preservation, VDBP binds fatty acids, activates macrophages, 
stimulates osteoclasts, enhances the chemotactic activity of C5, 
and is associated with immune cell surfaces such as T and B 

cells [22]. Only ∼4% of VDBP is bound to 25 (OH) D at any 
time and has a half‑life of 2.5–3 days [23].

The plasma concentration of VDBP is stable from birth and 
is ∼0.2–0.5 g/l [24].

aIm

The aim of this study was to evaluate the serum levels 
of 25 (OH) D and VDBP and their relation to each other 
in children with T1DM and to compare the serum level 
of 25 (OH) D with some variables such as age at onset, 
glycosylated hemoglobin (HbA1c) level, and disease duration 
in those patients.

PatIents and methods

This case–control study was performed on 60 children with 
T1DM from the outpatient department of Banha Teaching 
Hospital scheduled for insulin treatment. This study was 
conducted between June 2017 and March 2018.

A total of 35 children of nearly matched age, sex, and 
socioeconomic status were incorporated as the control group.

Ethical considerations:
(1) The study purpose and procedures were explained to the 

parents and written consents were obtained before the 
study.

(2) The authors declared no potential conflict of interest with 
respect to the research and publication of this article.

(3) All data of the patients and results of the study are 
confidential, and the patient has the right to keep them.

(4) The authors received no financial support for the research 
and publications of the article.

Inclusion criteria: type 1 diabetic children irrespective of age 
or sex were included.

Exclusion cr i ter ia :  pat ients  having malnutr i t ion 
[includes wasting (low weight‑for‑height), stunting (low 
height‑for‑age), and underweight (low weight‑for‑age)], 
malabsorption (frequent, bulky, offensive, or abnormal colored 
stool associated with malnutrition and/or manifestations of 
vitamin deficiency), liver disease (abnormal liver function 
tests), end‑stage renal disease, metabolic bone disease (clinical 
and laboratory abnormalities) or vitamin D supplementation, 
corticosteroid therapy or hypercortisolism, malignancy, 
immobility for more than 1 week, and medications influencing 
bone metabolism.

The studied groups were subjected to the following:
(1) Complete history taking, including age, sex, residence, 

dietetic history, vitamin supplementations, activity 
and family history of diabetes, metabolic diseases, and 
metabolic bone diseases. Diabetic history, including 
disease duration, age at onset, insulin dose, and 
compliance.

(2) Complete thorough clinical examination.
(3) Laboratory data, including the following:
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(a) Serum 25OHD.
(b) Serum VDBP.
(c) HbA1c level.

Method of obtaining human 25‑hydroxy vitamin D
Blood samples were taken and allowed to coagulate; serum 
was separated and stored at −70°C until biochemical analysis 
was performed.

Human serum 25‑OH‑D (kit from Wkea Med Supplies. 
Jilin China) concentration was determined by solid‑phase 
enzyme‑linked immunosorbent assay method [25], where the 
microtiter plate wells were coated with a purified human 25‑OH‑D 
antibody, which captures the 25‑OH‑D from the samples. The 
combination of the 25‑OH‑D antibody with the labeled enzyme 
becomes antibody–antigen–enzyme–antibody complex, and 
after washing completely, a substrate was added, forming blue 
color, and the HRP enzyme–catalyzed reaction was terminated 
by the addition of sulfuric acid solution, and the color change 
was measured spectrophotometrically at a wavelength of 450 nm. 
The concentration of 25‑OH‑D in the samples is determined by 
comparing the optical density of the samples to the standard curve.

Method of obtaining human vitamin D‑binding protein
Human serum VDBP (kit from AssayPro) concentration was 
determined by a double‑antibody sandwich (enzyme‑linked 
immunosorbent assay) method [25]. VDBP of the tested 
samples is added to the monoclonal antibody enzyme well, 
which was precoated with human VDBP monoclonal antibody. 
After incubation for 60 min at 37°C, VDBP antibody labeled 
with biotin and combined with streptavidin–HRP was added 
to form an immune complex. Then, washing was done, and 
a substrate was added. The color changed to blue, and then 
yellow with the effect of addition of an acid. The color was 
measured spectrophotometrically at a wavelength of 450 nm. 
The concentration of VDBP was determined by comparing the 
optical density of samples to the standard curve.

Methods of assay of HbA1c: the kit was obtained from 
Crystal Chem, which is a high‑quality enzymatic assay for the 
quantification of HbA1c in the whole blood, in which lysed whole 
blood samples are subjected to extensive protease digestion. 
Then, the released amino acids, including glycated valines 
from the hemoglobin beta chains, in turn, are measured [26].

Statistical analysis
The gathered data were statistically analyzed using the SPSS 
program for Windows (version 24; SPSS Inc., Chicago, 
Illinois, USA), and variables were presented as mean ± SD. 
The relationship between vitamin D and different laboratory 
parameters was determined using the Spearman correlation 
analysis and the linear regression method. P value less than 
0.05 was considered statistically significant.

results

The characteristics of studied groups were found as follows:
(1) Age range of patients with T1DM was 62–155 months, 

with mean ± SD of 115 ± 38.1 months and for the 

control group was 59–157 months, with mean ± SD 
of 113 ± 34.54 months (P = 0.35). Male/female ratio 
for T1DM was 26/34 and for control group was 
15/20 (P > 0.05). Age at onset for diabetes ranged from 
37 to 137, with mean ± SD of 88.91 ± 28.65 months. 
Duration of diabetes ranged from 4 to 39, with mean ± SD 
of 21 ± 5.82 months. HbA1c % levels in T1DM ranges 
from 5.8 to 9%, with mean ± SD of 7.19 ± 0.81%, and in 
control group, it ranges from 3.9 to 5.8%, with mean ± SD 
of 4.77 ± 0.82% (P > 0.001) [Table 1].

(2) The levels of 25 (OH) D and VDBP for T1DM ranged 
from 12 to 31, with mean ± SD of 20.73 ± 5.69 ng/ml and 
for control group ranged from 35 to 52, with mean ± SD 
of 41.16 ± 3.61 ng/ml [Table 2].

 VDBP level for T1DM ranged from 148 to 289, with 
mean ± SD of 203.96 ± 32.52 µg/ml, and for control 
group ranged from 196 to 382, with mean ± SD of 
238.32 ± 34.82 µg/ml [Table 2].

 Moreover, the 25 (OH) D level of T1DM group was 
significantly lower (t = 8.3 and P < 0.0001) than control 
group. In addition, level of VDBP of T1DM group is 
significantly lower (t = 4.7 and P < 0.0001) than control 
group [Table 2].

 Vitamin D level in T1DM had significant positive 
correlation with age at onset of the disease (r = 0.77) and 

Table 1 Characteristics of the studied groups

T1DM (n=60) Control group (n=35)
Age (months)

Range 62‑155 59‑157
Mean±SD 115±38.1 113±34.54

Age at onset (months)
Range 37‑137
Mean±SD 88.91±28.65

Sex [n (%)]
Male 26 (43.3) 15 (42.8)
Females 34 (56.7) 20 (57.2)

Duration (months)
Range 4‑39
Mean±SD 21±5.82

HbA1c %
Range 5.8‑9 3.9‑5.8
Mean±SD 7.19±0.81 4.77±0.82

Table 2 Vitamin D and vitamin D‑binding protein levels of 
the studied groups

T1DM 
(n=60)

Control group 
(n=35)

t P

Vitamin D
Range (ng/ml) 12‑31 35‑52 8.3 <0.0001*
Mean±SD 20.73±5.69 41.16±3.61

VDBP (µg/ml)
Range 148‑289 196‑382 4.7 <0.0001*
Mean±SD 203.96±32.52 238.32±34.82

*Significant results
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significant negative correlation with HbA1c % (r=−0.74) 
and no correlation with VDBP levels or disease duration.

 The 25 (OH) D levels in T1DM and control group are 
presented in Fig 1. It also shows that 25 (OH) D levels 
are lower in T1DM than in the control group.

 Moreover, the VDBP levels in T1DM and control group 
are presented in Fig 2, and it is seen that VDBP level is 
lower in T1DM than in the control group.

(3) The correlation between 25 (OH) D and the different 
parameters is presented in Table 3, and it shows that 
25 (OH) D level for T1DM group had a significant positive 
correlation with age at onset of the disease (r = 0.77), a 
significant negative correlation with HbA1c % (r=−0.74), 
and no correlation with disease duration or VDBP levels.

The correlation between 25 (OH) D level and HbA1c in 
T1DM is shown in Fig 3, and it shows that there is a negative 

correlation between 25 (OH) D and HbA1c (r=−0.74) in 
T1DM.

The correlation between 25 (OH) D level and age at 
onset in T1DM is shown in Fig 4, showing that there is a 
positive correlation between 25 (OH) D and age at onset in 
T1DM (r = 0.77).

The correlation between 25 (OH) D level and VDBP in T1DM 
is presented in Fig 5, illustrating that there is no correlation 
between 25 (OH) D and VDBP in T1DM (r = 0.03).

dIscussIon

T1DM is an autoimmune disorder caused by the progressive 
T‑cell‑mediated destruction of pancreatic β‑cells. It is triggered 
by a combination of genetic and environmental factors, 
including viral infections, dietary antigens, and 25 (OH) D 
deficiencies [27].

25 (OH) D has nonclassic role in many autoimmune diseases, 
as it shows potent antiproliferative and immunomodulatory 
properties [28].

Circulating 25 (OH) D is carried mainly by VDBP, which is 
thought to have immune regulatory properties itself [29].

Table 3 Correlation between vitamin D and different 
parameters

Variables r P
Age at onset 0.77 <0.001**
25 (OH) vitamin D3 (ng/ml)

Duration (years) 0.23 0.07
HbA1c % −0.74 <0.001**
VDBP (µg/ml) 0.03 0.82

**Significant results

Figure 1: Vitamin D levels in T1DM and control group. T1DM, type 1 
diabetes mellitus

Figure 2: VDBP levels in T1DM and control group. T1DM, type 1 diabetes 
mellitus; VDBP, vitamin D‑binding protein

Figure 3: Correlation between vitamin D level and HbA1c in T1DM. This 
figure shows that there is a negative correlation between vitamin D and 
HbA1c (r=−0.74) in T1DM. HbA1c, glycosylated hemoglobin; T1DM, 
type 1 diabetes mellitus

Figure 4: Correlation between vitamin D level and age at onset in T1DM. 
This figure shows that there is a positive correlation between vitamin D 
and age at onset in T1DM (r = 0.77). T1DM, type 1 diabetes mellitus
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To evaluate the level of 25 (OH) D and VDBP and their relation 
to each other and compare 25 (OH) D levels with the glycemic 
control in patients with T1DM, we measured 25 (OH) D and 
VDBP levels in 60 patients with T1DM and compare their 
levels with 35 normal children of nearly matched age, sex, 
and socioeconomic status.

Our results showed that 25 (OH) D of T1DM group was 
statistically significantly lower than control group (P < 0.0001). 
This finding was in accordance with many studies conducted 
by other authors such as Hewison [30], who stated that the 
autoimmune pathology of T1DM can be affected by the 
deficiency of 25 (OH) D, and 25 (OH) D deficiency precedes 
the onset of type 1 diabetes. Moreover, Raab et al. [31], stated 
that in the case of prediabetic children, we must be mindful of 
the risk of 25 (OH) D deficiency and consider recommending 
25 (OH) D supplementation at an early stage of type 1 diabetes. 
Setty‑Shah et al. [32], suggested that T1DM may be dependent 
on 25 (OH) D receptor variants. Many researchers found low 
25 (OH) D concentrations in children with T1DM, as in the UK 
by Giri et al. [33], in Finland by Miettinen et al. [34], in Korea 
by Nam et al. [35], and in Egypt by Abd‑Allah et al. [15]. On 
the contrary, Kim et al. [36], found that there was no significant 
difference in the frequency of 25 (OH) D deficiency between 
healthy and pediatric patients with T1DM in Seoul.

Our results also showed that 25 (OH) D of T1DM group had 
a statistically significant positive correlation with age at onset, 
and this may be owing to lack of 25 (OH) D vitamin D function 
in promotion of insulin secretion and beta cell survival by 
inactivation of NF‑κb and downregulation of Fas‑Ligand [37]. 
This was in accordance with Svoren et al. [16], who found 
that although glycemic control, duration of DM, and age were 
associated with 25 (OH) D inadequacy, only age remained a 
significant predictor.

We also found that there was a negative correlation between 
25 (OH) D levels and HbA1c in diabetic patients, as 25 (OH) D 
regulates intracellular calcium, so it increases insulin secretion 

and promotes insulin sensitivity [38]. This finding was similar 
to Kositsawat et al. [39], who stated that decreased levels of 
25OHD lead to increased levels of glucose and hence increased 
levels of glycated hemoglobin. Moreover, Soliman et al. [40], 
found that 25 (OH) D was lower in T1D Egyptian children and 
had significant strong negative correlations with fasting blood 
sugar and HbA1c %.

Our results showed that VDBP of T1DM group was statistically 
significantly lower than control group (t = 4.7, P < 0.0001). 
This finding was in accordance with Blanton et al. [22], 
who reported that serum VDBP levels are decreased in 
those with type 1 diabetes. In addition, Thrailkill et al. [41], 
found that there is increased urinary VDBP loss secondary to 
diminished availability of megalin (receptor of reabsorption of 
VDBP from proximal tubule) owing to its loss with proteinuria. 
Moreover, Kirac et al. [29], demonstrated a significant decrease 
in VDBP diabetic patients.

Our data found no significant correlation between 25 (OH) D 
and VDBP levels in T1DM. This may be owing to the fact that 
VDBP has many other functions other than carrying 25 (OH) 
D [22], and only about 4% of VDBP is bound to 25 (OH) 
D at any one time [23]. Similar finding was shown by Kim 
et al. [36], who stated that in pediatric type 1 diabetic patients, 
urinary VDBP excretion did not contribute to low serum 
25(OH) D level in the setting of normoalbuminuria. In addition, 
Sollid et al. [42], found that 25 (OH) D supplementation for 
12 months did not affect serum VDBP but increased 25 (OH) D 
levels in normal individuals.

conclusIon

Serum levels of 25 (OH) D and VDBP levels in T1DM are 
significantly lower than normal children, and 25 (OH) D levels 
have no correlation with VDBP levels.

Serum levels of 25 (OH) D have a positive correlation with 
age at onset of the disease, a negative correlation with HbA1c 
%, and no correlation with disease duration.

Recommendation
Low levels of 25(OH) D could be considered a potential risk 
factor for the development of T1DM. Moreover, 25(OH) D 
levels were related to glycemic control in diabetic patients, thus 
vitamin D supplementation could have a therapeutic potential 
in prevention and management of T1DM. Further studies of 
including vitamin D supplements in treatment protocol of 
T1DM are needed.

Conflicts of interest
None declared.
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