Assessment of the right ventricular function before and after coronary artery bypass surgery by conventional and tissue Doppler echocardiography

Emmanuel L. Aziz
Departments of Cardiology, emmanuellouka@yahoo.com

Mohamed Abbas
Departments of Cardiology

Ashraf Abd-Elaziz
Cardiothoracic Surgery, National Heart Institute

Wayel S. Bebawy
Cardiothoracic Surgery, National Heart Institute

Follow this and additional works at: https://jmisr.researchcommons.org/home

Part of the Cardiology Commons, and the Medical Sciences Commons

Recommended Citation
Aziz, Emmanuel L.; Abbas, Mohamed; Abd-Elaziz, Ashraf; and Bebawy, Wayel S. (2023) "Assessment of the right ventricular function before and after coronary artery bypass surgery by conventional and tissue Doppler echocardiography," Journal of Medicine in Scientific Research: Vol. 6: Iss. 1, Article 9.
DOI: https://doi.org/10.59299/2537-0928.1009

This Original Study is brought to you for free and open access by Journal of Medicine in Scientific Research. It has been accepted for inclusion in Journal of Medicine in Scientific Research by an authorized editor of Journal of Medicine in Scientific Research. For more information, please contact m_a_b200481@hotmail.com.
Assessment of the right ventricular function before and after coronary artery bypass surgery by conventional and tissue Doppler echocardiography

Emmanuel L. Aziz, Mohamed Abbas, Ashraf Abd-Elaziz, Wayel S. Bebawy

Abstract

Aim of the work: To study the extent of right ventricular (RV) dysfunction in ischemic patients after coronary artery bypass grafting (CABG).

Patients and methods: RV function was studied preoperatively and followed for 1 month postoperatively in 40 patients who were scheduled for elective coronary artery bypass surgery and in other 40 controls. We evaluated RV function by tissue Doppler study of the tricuspid annulus and the basal septum, tricuspid annular plane systolic excursion, and RV dimensions. Both LV dimensions, left atrium dimensions, and aortic root dimensions were also measured before and after surgery.

Results: RV function was significantly reduced after CABG as assessed by pulsed-wave tissue Doppler imaging in both the tricuspid annulus and the basal septum. There was also a significant reduction of tricuspid annular plane systolic excursion after CABG, but there was no significant difference in RV dimensions. Moreover, LVEDD was significantly reduced after CABG.

Conclusion: RV systolic function was reduced after CABG and remained depressed for 1 month postoperatively.

Keywords: Tricuspid annular plane systolic excursion, Tissue Doppler Imaging, Right ventricle

1. Introduction

Although the mechanism of right ventricular (RV) dysfunction after cardiac surgery is not well understood, different mechanisms might interplay to produce effects such as cardiopulmonary bypass, perioperative myocardial ischemia, intraoperative myocardial damage, cardioplegia, and pericardial disruption or adhesions. Although assessment of RV function is difficult owing to its complex geometry, this assessment could be achieved through two-dimensional echocardiography, transesophageal echocardiography, Doppler tissue imaging, and MRI.

In two-dimesnional echocardiography, RV enlargement is indicated by a diameter more than 42 mm at the base, a diameter more than 35 mm at the mid-level, or a longitudinal dimension more than 86 mm.

By tissue Doppler imaging, RV function could be assessed through measurement of the tricuspid annular motion — which provides an estimation of the RV ejection fraction — and the measurement of tricuspid annular velocity.

Tricuspid annular plane systolic excursion (TAPSE) is obtained from the apical 4-chamber view by M-mode in base of the RV free wall. The TAPSE is a method to measure the distance of systolic excursion of the RV annular segment. TAPSE less than 16 mm indicates RV systolic dysfunction.

1.1. Tricuspid annular plane systolic excursion

Fig. 1.
2. Aim

The aim was to assess the effect of coronary artery bypass surgery on the RV function.

3. Patients and methods

The institutional committee’s ethical criteria were followed during all proceedings. The National Heart institute’s Local Medical Ethics Committee approved the study. Following an explanation of the purpose, procedures, and nature of the study to all participants, signed informed consent was obtained from each participant.

This study included 40 patients who were scheduled for coronary artery bypass surgery (group 1) and 40 healthy controls (group 2). Patients were assessed preoperatively and postoperatively. The preoperative assessments included clinical evaluation, echocardiography, and coronary angiography or PCI. The postoperative assessments included clinical evaluation and echocardiography.

The study population was recruited from the Cardiology Department and Cardiothoracic Surgery Departments at National Heart Institute (from April 2018 till September 2019). The study population was divided into two groups: group 1, which included 40 patients who were scheduled for coronary artery bypass grafting (CABG) during the study, and group 2, which included 40 healthy participants who had no history of cardiac disease and normal transthoracic echocardiography study.

All patients included in the study were subjected to a preoperative clinical evaluation that included a detailed history taking, complete physical examination, 12-lead ECG, and routine laboratory workup as well as assessment of the risk factors such as diabetes mellitus, hypertension, and smoking. The laboratory workup was in the form of full blood count, liver function tests (AST and ALT) and kidney function tests (urea and creatinine).

The echocardiographic measurements included left ventricular end diastolic and end systolic dimensions (LVESD and LVEDD), aortic root dimensions, and left atrial dimensions.

The systolic tricuspid regurgitation pressure gradient between RV and right atrium was calculated by the simplified Bernoulli equation, and accordingly, pulmonary artery systolic pressure was estimated by adding the right atrial pressure.

TAPSE was obtained from the apical 4-chamber view by M-mode in base of the RV free wall.

Two-dimensional echocardiography-derived RV dimensions were determined from the apical 4-chamber view; three basic measures were taken in end-diastole RV length, the basal and mid-cavity RV diameters, as well as the RV longitudinal dimension.

Using tissue Doppler study, the systolic (Sm) and early and late diastolic (Em and Am) tricuspid annular motion velocities were measured at the lateral free wall (TV lat) and basal septum obtained from the apical four-chamber view using a pulsed-wave Doppler. The averages of 3 TDI signals from different cardiac cycles were employed for data analysis. The peak systolic velocity ranges from 10 to 19 cm/s. When the systolic velocity is less than 10 cm/s, it should raise the suspicion of abnormal RV function. The E TDI peak velocity ranges from 8 to 20 cm/s. When the E TDI is less than 8 cm/s, it indicates RV diastolic dysfunction. The ATDI peak velocity ranges from 7 to 20 cm/s.

Coronary angiography was analyzed for significant stenosis in any of the major coronaries or its branches.

Operative details for group I included type of graft (arterial or venous), operative ischemic time, if a prosthetic valve was implanted, in addition to the CABG surgery and the size and type of the valve. The same clinical, laboratory, and echocardiographic parameters measured in the preoperative assessment were reassessed postoperatively.

Data analysis was done, where the included preoperative data obtained in group 1 were compared with the data of the control group. Preoperative data were compared with postoperative data in group 1 regarding echocardiographic measurements (LVEDD, LVESD, LA, and AOR), RV dimensions, TAPSE, and tissue Doppler imaging of the tricuspid annulus and the basal septum.

4. Results

The study was performed over a period of 19 months from April 2018 till September 2019 and included 40 patients (group 1) who had CABC, with a mean age of 59.3 ± 5.858 years. A total of 30 patients
were males, representing 75% (Table 1). The study also included 40 healthy individuals, with a mean age of 58.3 ± 5.49 years. Overall, 32 (80%) were males in the control group. Only 18 (45%) patients were hypertensive in the control group, whereas 26 (65%) persons were hypertensive in the patient group. Moreover, 16 (40%) patients were diabetics in the control group and 24 (60%) patients were diabetics in the patient group (Table 1 and Figs. 2 and 3).

4.1. Clinical characteristics in group 1

Table 2.

4.2. Echocardiographic data in the patient and control groups

As noted in Table 3, the control group had significantly lower left ventricular, left atrial, and aortic dimensions; however, the RV transverse dimensions did not differ, and the RV longitudinal dimension was actually lower in group 1 than in the controls, although both were in the normal range. Moreover, the S wave recorded in the basal septum was lower in group 1. The other TDI data showed no significant difference other than RV dimensions (Figs. 4–6).

4.3. The coronary angiographic data of the study population

Table 4.

4.4. Left main artery

The left main coronary artery was involved in six cases (15% of cases). Two had ostial disease, whereas the other four had distal significant disease.

4.5. Echocardiographic data in patients preoperatively and postoperatively

As shown in Table 5, the preoperative and postoperative echocardiographic diameters of the left ventricle, aortic root, and left atrium were

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cases (40)</th>
<th>Controls (40)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVESD (cm)</td>
<td>3.9 ± 0.44</td>
<td>3.2 ± 0.88</td>
<td>0.001</td>
</tr>
<tr>
<td>LVEDD (cm)</td>
<td>5.7 ± 0.69</td>
<td>4.2 ± 0.46</td>
<td>0.008</td>
</tr>
<tr>
<td>LA (cm)</td>
<td>4.2 ± 0.66</td>
<td>3.7 ± 0.45</td>
<td>0.04</td>
</tr>
<tr>
<td>AOR (cm)</td>
<td>3.1 ± 0.36</td>
<td>2.8 ± 0.41</td>
<td>0.02</td>
</tr>
<tr>
<td>RVD3 (cm)</td>
<td>4.1 ± 0.81</td>
<td>5.7 ± 1.14</td>
<td>0.001</td>
</tr>
<tr>
<td>TDSS (m/s)</td>
<td>0.07 ± 0.23</td>
<td>0.08 ± 0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>TAPSE (cm)</td>
<td>2.48 ± 0.38</td>
<td>2.6 ± 0.47</td>
<td>0.4</td>
</tr>
<tr>
<td>TDIAS (m/s)</td>
<td>0.10 ± 0.03</td>
<td>0.15 ± 0.023</td>
<td>0.063</td>
</tr>
<tr>
<td>TDIAE (m/s)</td>
<td>0.12 ± 0.03</td>
<td>0.13 ± 0.03</td>
<td>0.347</td>
</tr>
<tr>
<td>TDIAA (m/s)</td>
<td>0.15 ± 0.388</td>
<td>0.14 ± 0.04</td>
<td>0.46</td>
</tr>
<tr>
<td>TDISE (m/s)</td>
<td>0.09 ± 0.02</td>
<td>0.098 ± 0.19</td>
<td>0.148</td>
</tr>
<tr>
<td>TDISA (m/s)</td>
<td>0.08 ± 0.02</td>
<td>0.08 ± 0.01</td>
<td>0.78</td>
</tr>
</tbody>
</table>

A, late diastolic tricuspid velocity; A, late diastolic basal septal velocity; AOR, aortic root; E, early diastolic basal septal velocity; E, early diastolic tricuspid annular velocity; LA, left atrium; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; RVD3, base to apex right ventricular dimension; S, systolic tricuspid annular velocity; S, systolic basal septal velocity; TAPSE, tricuspid annular plane systolic excursion; TDIA, tissue Doppler image in tricuspid annulus; TDIS, Tissue Doppler imaging in basal septum; TDIS, Tissue Doppler S velocity at basal septum.
compared. There was a significant difference ($P < 0.05$) between the preoperative and postoperative LVEDD data of patients (Fig. 7).

As noted from Table 6, there were significant differences ($P < 0.05$) between the preoperative and postoperative tissue Doppler data. The tricuspid annular and basal septal values were significantly reduced postoperatively, and TAPSE was more significantly decreased postoperatively.

4.6. Surgical details

(1) A total of 26 patients were operated upon off-pump, with a percentage of 65%, whereas the remaining 14 patients were operated upon on-pump, with a percentage of 35%.

(2) The type of cardioplegia was warm antegrade cardioplegia with each dose from 15- to 20-min interval.
The types of grafts used were LIMA graft for LAD and saphenous venous grafts for OM, PDA, and diagonal branches.

A total of 30 patients required venous graft anastomosis with PDA-RCA, whereas only 28 patients required venous grafts anastomosis with OM and 38 patients required LIMA anastomosis with mid-LAD. The number of patients who had significant left main disease and required graft anastomosis with both LAD and OM was only six.

The type of vessel by-passed had no statistically significant effect on the degree of RV dysfunction.

Figs. 8 and 9.

5. Discussion

As the RV has low oxygen demand and high degree of collateralization of blood supply [8], RV function is not affected significantly after acute coronary syndrome and myocardial infarction unless the inferior wall is specifically involved.

The aim of this study was to assess the effect of CABG surgery on the RV.

We proceeded by comparing the echocardiographic features of the right and left ventricles of patients who were planned to have CABG with those of age- and sex-matched healthy controls.

However, controls had lower left ventricular dimensions (end-systolic dimension and end-diastolic dimension of 3.05 ± 0.391 and 4.808 ± 0.469 cm, respectively, vs. 3.79 ± 0.75 and 5.5 ± 0.69 cm, respectively, with $P = 0.001$ and 0.008, respectively), and the RV dimensions did not differ significantly. Only the RV longitudinal dimension was slightly less than that of healthy controls (5.97 ± 1.143 cm vs. 4.98 ± 0.811 cm, $P = 0.001$), and this led us to conclude that IHD affected the LV more than the right.

Comparison between preoperative and postoperative data in the patient group showed a significant improvement in LV size and function. The left ventricular end-diastolic diameter improved (5.7 ± 0.69 cm vs. 5.23 ± 0.57 cm, $P = 0.037$). This is in contrast to the findings in a previous study done by Hamouratidis et al. [9], where there was no significant change in left ventricular diastolic diameter. The RV dimensions did not change significantly ($P > 0.05$) postoperatively neither did the pulmonary artery systolic pressure.

In our study, we found that all tricuspid annular velocities as assessed by TDI showed significant difference between preoperative and postoperative

<table>
<thead>
<tr>
<th>Variables</th>
<th>Preoperative</th>
<th>Postoperative</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVESD (cm)</td>
<td>3.9 ± 0.45</td>
<td>3.85 ± 0.612</td>
<td>0.58</td>
</tr>
<tr>
<td>LVEDD (cm)</td>
<td>5.7 ± 0.69</td>
<td>5.2 ± 0.571</td>
<td>0.03</td>
</tr>
<tr>
<td>LA (cm)</td>
<td>4.2 ± 0.65</td>
<td>3.9 ± 0.42</td>
<td>0.10</td>
</tr>
<tr>
<td>AOR (cm)</td>
<td>3.1 ± 0.36</td>
<td>2.9 ± 0.478</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Preoperative and postoperative data of only the LVEDD showed a statistically significant reduction ($P < 0.05$).
studies, such as systolic velocity (0.13 ± 0.03 vs. 0.011 ± 0.029, \(P = 0.014\)), early diastolic velocity (0.012 ± 0.032 vs. 0.08 ± 0.024, \(P = 0.001\)), and late diastolic velocity (0.15 ± 0.38 vs. 0.08 ± 0.04, \(P = 0.0001\)).

This is in accordance with the study done by Roshanali and Ali [10]. Baseline echocardiography was performed for their study patients who were scheduled for coronary artery bypass surgery, and follow-up echocardiography was done for these patients 1 year after CABG. RV tissue velocity decreased from 14.0 to 7.0 cm/s; \(P < 0.001\).

Another study done by Alam et al. [1][2003] concluded that both systolic and early diastolic tricuspid annular velocities (TVA) were significantly reduced 1 month after CABG (\(P < 0.001\) for both), and there was no improvement in the diastolic TVA in the follow-up period. Moreover, the systolic TVA showed no improvement 3 months after CABG but partial recovery at 1 year.

Basal septal systolic, early, and late diastolic velocities decreased postoperatively (systolic velocity = 0.07 ± 0.014 vs. 0.06 ± 0.23, \(P = 0.05\), early diastolic = 0.09 ± 0.018 vs. 0.08 ± 0.021, \(P = 0.017\), and late diastolic = 0.08 ± 0.02 vs. 0.07 ± 0.021, \(P = 0.045\)).

In another study done by Casula et al. [11], pulsed-wave Doppler tissue was used as means of assessing RV function. One month after surgery, the transthoracic echocardiographic data showed a 55 ± 12% (\(P < 0.0001\)) reduction in RV systolic velocities compared with preoperative values.

TAPSE also decreased postoperatively (TAPSE 2.48 ± 0.388 vs. 1.82 ± 0.39; \(P = 0.001\)). This finding is in accordance with the study done by Roshanali et al. [10].
In another study done by Ojaghi et al. [12], TAPSE and peak Sm velocity was significantly reduced 1 week after CABG and remained so after 1 month.

5.1. Conclusion

RV function assessed by tissue Doppler imaging in tricuspid annulus and basal septum is significantly reduced 1 month after CABG.

RV function by TAPSE was also depressed compared with the preoperative data. The RV dimensions were apparently not affected.

Compared with healthy controls, preoperative data did not differ except for systolic basal septal velocity. It was lower in the patients studied than in controls. RV longitudinal dimension was also slightly less than in healthy controls.

Conflict of interest

Authors declare no conflict of interest.

References

